

HypoPG

HypoPG [https://github.com/HypoPG/hypopg] is a PostgreSQL [https://postgresql.org] extension, adding support for
Hypothetical Indexes.
It’s compatible with PostgreSQL 9.2 and above.

Note

This documentation is a work in progress. If you’re looking for something
and can’t find it here, please report an issue [https://github.com/HypoPG/hypopg/issues/] so I can enhance the
documentation.

Contents:

	Hypothetical Indexes

	Installation
	Requirements

	Packages

	Installation from sources

	Usage
	Introduction

	Install the extension

	Configuration

	Supported access methods

	Create a hypothetical index

	Manipulate hypothetical indexes

	Hypothetically hide existing indexes

	Contributing
	Talk

	Bug reports

	Hacking

Hypothetical Indexes

A hypothetical, or virtual, index is an index that does not really exist, and
therefore does not cost CPU, disk or any resource to create. They are useful to
find out whether specific indexes can increase the performance for problematic
queries, since you can discover if PostgreSQL will use these indexes or not
without having to spend resources to create them.

Installation

Requirements

	PostgreSQL 9.2+

Packages

Hypopg is available as a package on some GNU/Linux distributions:

	RHEL/Rocky Linux

HypoPG is available as a package using the PGDG packages [https://yum.postgresql.org].

Once the PGDG repository is setup, you just need to install the package. As
root:

yum install hypopg

	Debian / Ubuntu

HypoPG is available as a package using the PGDG packages [https://apt.postgresql.org].

Once the PGDG repository is setup, you just need to install the package. As
root:

apt install postgresql-XY-hypopg

where XY is the major version for which you want to install hypopg.

	Archlinux

Hypopg is available on the AUR repository [https://aur.archlinux.org/packages/hypopg-git/].

If you have yaourt setup, you can simply install the hypopg-git package
with the following command:

yaourt -S hypopg-git

Otherwise, look at the official documentation [https://wiki.archlinux.org/index.php/Arch_User_Repository#Installing_packages]
to manually install the package.

Note

Installing this package will use the current development version. If you
want to install a specific version, please see the
Installation from sources section.

Installation from sources

To install HypoPG from sources, you need the following extra requirements:

	PostgreSQL development packages

Note

On Debian/Ubuntu systems, the development packages are named
postgresql-server-dev-X, X being the major version.

On RHEL/Centos systems, the development packages are named
postgresqlX-devel, X being the major version.

	A C compiler and make

	unzip

	optionally the wget tool

	a user with sudo privilege, or a root access

Note

If you don’t have sudo or if you user isn’t authorized to issue command as
root, you should do all the following commands as root.

First, you need to download HypoPG source code. If you want the development
version, you can download it from here [https://github.com/HypoPG/hypopg/archive/master.zip], or via command line:

wget https://github.com/HypoPG/hypopg/archive/master.zip

If you want a specific version, you can chose the version you want here [https://github.com/HypoPG/hypopg/releases] and follow the related download
link. For instance, if you want to install the version 1.0.0, you can download
it from the command line with the following command:

wget https://github.com/HypoPG/hypopg/archive/1.0.0.zip

Then, you need to extract the downloaded archive with unzip and go to the
extracted directory. For instance, if you downloaded the latest development
version:

unzip master.zip
cd hypopg-master

You can now compile and install HypoPG. Simply run:

make
sudo make install

Note

If you were doing these commands as root, you don’t need to use sudo.
The last command should therefore be:

make install

If no errors occured, HypoPG is now available! If you need help on how to use
it, please refer to the Usage section.

Usage

Introduction

HypoPG is useful if you want to check if some index would help one or multiple
queries. Therefore, you should already know what are the queries you need to
optimize, and ideas on which indexes you want to try.

Also, the hypothetical indexes that HypoPG will create are not stored in any
catalog, but in your connection private memory. Therefore, it won’t bloat any
table and won’t impact any concurrent connection.

Also, since the hypothetical indexes doesn’t really exists, HypoPG makes sure
they will only be used using a simple EXPLAIN statement (without the ANALYZE
option).

Install the extension

As any other extension, you have to install it on all the databases where you
want to be able to use it. This is simply done executing the following query,
connected on the database you want to install HypoPG with a user having enough
privileges:

CREATE EXTENSION hypopg ;

HypoPG is now available. You can check easily if the extension is present
using psql [https://www.postgresql.org/docs/current/static/app-psql.html]:

\dx
 List of installed extensions
 Name | Version | Schema | Description
---------+---------+------------+-------------------------------------
 hypopg | 1.1.0 | public | Hypothetical indexes for PostgreSQL
 plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
(2 rows)

As you can see, hypopg version 1.1.0 is installed. If you need to check using
plain SQL, please refer to the pg_extension table documentation [https://www.postgresql.org/docs/current/static/catalog-pg-extension.html].

Configuration

The following configuration parameters (GUCs) are available, and can be changed
interactively:

	hypopg.enabled:

	Default to on.
Use this parameter to globally enable or disable HypoPG. When HypoPG is
disabled, no hypothetical index will be used, but the defined hypothetical
indexes won’t be removed.

	hypopg.use_real_oids:

	Default to off.
By default, HypoPG won’t use “real” object identifiers, but instead borrow
ones from the ~ 14000 / 16384 (respectively the lowest unused oid less then
FirstNormalObjectId and FirstNormalObjectId) range, which are reserved by
PostgreSQL for future usage in future releases. This doesn’t cause any
problem, as the free range is dynamically computed the first time a
connection uses HypoPG, and has the advantage to work on a standby server.
But the drawback is that you can’t have more than approximately 2500
hypothetical indexes at the same time, and creating a new hypothetical index
will become very slow once more than the maximum number of objects has been
created until hypopg_reset() is called.

If those drawbacks are problematic, you can enable this parameter. HypoPG
will then ask for a real object identifier, which will need to obtain more
locks and won’t work on a standby, but will allow to use the full range of
object identifiers.

Note that switching this parameter doesn’t require to reset the entries, both
can coexist at the same time.

Supported access methods

The following access methods are supported:

	btree

	brin

	hash (requires PostgreSQL 10 or above)

	bloom (requires the bloom extension to be installed)

Create a hypothetical index

Note

Using HypoPG require some knowledge on the EXPLAIN command. If you need
more information about this command, you can check the official
documentation [https://www.postgresql.org/docs/current/static/using-explain.html]. There
are also a lot of very good resources available.

For clarity, let’s see how it works with a very simple test case:

CREATE TABLE hypo (id integer, val text) ;
INSERT INTO hypo SELECT i, 'line ' || i FROM generate_series(1, 100000) i ;
VACUUM ANALYZE hypo ;

This table doesn’t have any index. Let’s assume we want to check if an index
would help a simple query. First, let’s see how it behaves:

EXPLAIN SELECT val FROM hypo WHERE id = 1;
 QUERY PLAN
--
 Seq Scan on hypo (cost=0.00..1791.00 rows=1 width=14)
 Filter: (id = 1)
(2 rows)

A plain sequential scan is used, since no index exists on the table. A simple
btree index on the id column should help this query. Let’s check with
HypoPG. The function hypopg_create_index() will accept any standard
CREATE INDEX statement(s) (any other statement passed to this function will be
ignored), and create a hypothetical index for each:

SELECT * FROM hypopg_create_index('CREATE INDEX ON hypo (id)') ;
 indexrelid | indexname
------------+----------------------
 18284 | <18284>btree_hypo_id
(1 row)

The function returns two columns:

	the object identifier of the hypothetical index

	the generated hypothetical index name

We can run the EXPLAIN again to see if PostgreSQL would use this index:

EXPLAIN SELECT val FROM hypo WHERE id = 1;
 QUERY PLAN
--
 Index Scan using <18284>btree_hypo_id on hypo (cost=0.04..8.06 rows=1 width=10)
 Index Cond: (id = 1)
(2 rows)

Yes, PostgreSQL would use such an index. Just to be sure, let’s check that the
hypothetical index won’t be used to acually run the query:

EXPLAIN ANALYZE SELECT val FROM hypo WHERE id = 1;
 QUERY PLAN

 Seq Scan on hypo (cost=0.00..1791.00 rows=1 width=10) (actual time=0.046..46.390 rows=1 loops=1)
 Filter: (id = 1)
 Rows Removed by Filter: 99999
 Planning time: 0.160 ms
 Execution time: 46.460 ms
(5 rows)

That’s all you need to create hypothetical indexes and see if PostgreSQL would
use such indexes.

Manipulate hypothetical indexes

Some other convenience functions and views are available:

	hypopg_list_indexes: view that lists all hypothetical indexes that have
been created

SELECT * FROM hypopg_list_indexes ;
 indexrelid | indexname | nspname | relname | amname
------------+----------------------+---------+---------+--------
 18284 | <18284>btree_hypo_id | public | hypo | btree
(1 row)

	hypopg(): function that lists all hypothetical indexes that have
been created with the same format as pg_index

SELECT * FROM hypopg() ;
 indexname | indexrelid | indrelid | innatts | indisunique | indkey | indcollation | indclass | indoption | indexprs | indpred | amid
----------------------+------------+----------+---------+-------------+--------+--------------+----------+-----------+----------+---------+------
 <18284>btree_hypo_id | 13543 | 18122 | 1 | f | 1 | 0 | 1978 | <NULL> | <NULL> | <NULL> | 403
(1 row)

	hypopg_get_indexdef(oid): function that lists the CREATE INDEX statement
that would recreate a stored hypothetical index

SELECT indexname, hypopg_get_indexdef(indexrelid) FROM hypopg_list_indexes ;
 indexname | hypopg_get_indexdef
----------------------+--
 <18284>btree_hypo_id | CREATE INDEX ON public.hypo USING btree (id)
(1 row)

	hypopg_relation_size(oid): function that estimates how big a hypothetical
index would be:

SELECT indexname, pg_size_pretty(hypopg_relation_size(indexrelid))
 FROM hypopg_list_indexes ;
 indexname | pg_size_pretty
----------------------+----------------
 <18284>btree_hypo_id | 2544 kB
(1 row)

	hypopg_drop_index(oid): function that removes the given hypothetical
index

	hypopg_reset(): function that removes all hypothetical indexes

Hypothetically hide existing indexes

You can hide both existing and hypothetical indexes hypothetically.
If you want to test it as described in the documentation,
you should first use hypopg_reset() to clear the effects of any other hypothetical indexes.

As a simple case, let’s consider two indexes:

SELECT hypopg_reset();
CREATE INDEX ON hypo(id);
CREATE INDEX ON hypo(id, val);

EXPLAIN SELECT * FROM hypo WHERE id = 1;
 QUERY PLAN
--
Index Only Scan using hypo_id_val_idx on hypo (cost=0.29..8.30 rows=1 width=13)
Index Cond: (id = 1)
(2 rows)

The query plan is using the hypo_id_val_idx index now.

	hypopg_hide_index(oid): function that allows you to hide an index in the EXPLAIN output by using its OID.
It returns true if the index was successfully hidden, and false otherwise.

SELECT hypopg_hide_index('hypo_id_val_idx'::REGCLASS);
 hypopg_hide_index

t
(1 row)

EXPLAIN SELECT * FROM hypo WHERE id = 1;
 QUERY PLAN

Index Scan using hypo_id_idx on hypo (cost=0.29..8.30 rows=1 width=13)
Index Cond: (id = 1)
(2 rows)

As an example, let’s assume that the query plan is currently using the hypo_id_val_idx index.
To continue testing, use the hypopg_hide_index(oid) function to hide another index.

SELECT hypopg_hide_index('hypo_id_idx'::REGCLASS);
 hypopg_hide_index

t
(1 row)

EXPLAIN SELECT * FROM hypo WHERE id = 1;
 QUERY PLAN

Seq Scan on hypo (cost=0.00..180.00 rows=1 width=13)
Filter: (id = 1)
(2 rows)

	hypopg_unhide_index(oid): function that restore a previously hidden index in the EXPLAIN output by using its OID.
It returns true if the index was successfully restored, and false otherwise.

SELECT hypopg_unhide_index('hypo_id_idx'::regclass);
 hypopg_unhide_index

t
(1 row)

EXPLAIN SELECT * FROM hypo WHERE id = 1;
 QUERY PLAN

Index Scan using hypo_id_idx on hypo (cost=0.29..8.30 rows=1 width=13)
Index Cond: (id = 1)
(2 rows)

	hypopg_unhide_all_index(): function that restore all hidden indexes and returns void.

	hypopg_hidden_indexes(): function that returns a list of OIDs for all hidden indexes.

SELECT * FROM hypopg_hidden_indexes();
 indexid

526604
(1 rows)

	hypopg_hidden_indexes: view that returns a formatted list of all hidden indexes.

SELECT * FROM hypopg_hidden_indexes;
 indexrelid | index_name | schema_name | table_name | am_name | is_hypo
-------------+----------------------+-------------+------------+---------+---------
 526604 | hypo_id_val_idx | public | hypo | btree | f
(1 rows)

Note

Hypothetical indexes can be hidden as well.

SELECT hypopg_create_index('CREATE INDEX ON hypo(id)');
 hypopg_create_index

(12659,<12659>btree_hypo_id)
(1 row)

EXPLAIN SELECT * FROM hypo WHERE id = 1;
 QUERY PLAN
--
Index Scan using "<12659>btree_hypo_id" on hypo (cost=0.04..8.05 rows=1 width=13)
Index Cond: (id = 1)
(2 rows)

Now that the hypothetical index is being used, we can try hiding it to see the change:

SELECT hypopg_hide_index(12659);
 hypopg_hide_index

t
(1 row)

EXPLAIN SELECT * FROM hypo WHERE id = 1;
 QUERY PLAN

Index Scan using hypo_id_idx on hypo (cost=0.29..8.30 rows=1 width=13)
Index Cond: (id = 1)
(2 rows)

SELECT * FROM hypopg_hidden_indexes;
 indexrelid | index_name | schema_name | table_name | am_name | is_hypo
-------------+----------------------+-------------+------------+---------+---------
 12659 | <12659>btree_hypo_id | public | hypo | btree | t
 526604 | hypo_id_val_idx | public | hypo | btree | f
(2 rows)

Note

If a hypothetical index has been hidden, it will be automatically unhidden
when it is deleted using hypopg_drop_index(oid) or hypopg_reset().

SELECT hypopg_drop_index(12659);

SELECT * FROM hypopg_hidden_indexes;
 indexrelid | index_name | schema_name | table_name | am_name | is_hypo
-------------+----------------------+-------------+------------+---------+---------
 526604 | hypo_id_val_idx | public | hypo | btree | f
(2 rows)

Contributing

HypoPG is an open source project, distributed under the PostgreSQL licence [https://opensource.org/licenses/postgresql].

Talk

If you have suggestions, feature request or just want to say hi you can join the
#hypopg IRC channel on freenode.

Bug reports

If you’ve found a bug, please report it on the HypoPG bug-tracker on Github [https://github.com/HypoPG/hypopg/issues/].

Hacking

If you want to fix a bug, enhance the documentation or develop new features,
feel free to clone the git repository on Github [https://github.com/HypoPG/hypopg].

Index

 nav.xhtml

 Table of Contents

 		
 HypoPG

 		
 Hypothetical Indexes

 		
 Installation

 		
 Requirements

 		
 Packages

 		
 Installation from sources

 		
 Usage

 		
 Introduction

 		
 Install the extension

 		
 Configuration

 		
 Supported access methods

 		
 Create a hypothetical index

 		
 Manipulate hypothetical indexes

 		
 Hypothetically hide existing indexes

 		
 Contributing

 		
 Talk

 		
 Bug reports

 		
 Hacking

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

